
Color-mapped noise vector fields for generating procedural

micro-patterns

Supplemental document

C. Grenier, B. Sauvage, J.-M. Dischler, S. Thery
ICube, Université de Strasbourg, CNRS, France

This supplemental document contains the following elements:

1. A reminder of the background about tiling and blending, and our notations.

2. The first order moment estimation (mean), for a square footprint and then over an arbitrary footprint. This
corresponds to Section 5.2 in the paper.

3. The centered second order moment (variance) estimation, for a square footprint and then over an arbitrary
footprint. This corresponds to Section 5.3 in the paper.

4. The covariance estimation, for a square footprint and then over an arbitrary footprint. This calculation is used
for the normal map filtering in Section 6.5 of the paper.

5. A summary of the main equations (mean, variance and covariance estimators) that are used in the paper and
useful for implementation.

6. Results. We show the detailed impact of the estimations. We show other generated patterns. We show the filtering
of the procedural phasor noise.

1 Tiling and blending background

We recall here the background about the tiling and blending (T&B) algorithm [HN18, DH19, Bur19]. This algorithm
synthesizes a noise N from a discrete input example E by tiling the infinite plane with overlapping hexagonal tiles
trimmed in E. Without loss of generality, it is assumed E has zero mean (otherwise both E and N are shifted).
Assuming that E is the realization of a Gaussian process, N is evaluated at any location u as a weighted average of
three overlapping tiles :

N(u) =

3∑
i=1

wi(u)Ei(u) (1)

The tiles Ei are trimmed at random locations in E. The weighting functions wi decrease from 1 at the center of the tile
to 0 at the boundary, with

∑
i w

2
i = 1 for all u.

2 First order moment estimation

2.1 MIPmap estimation

In this section we explain how to evaluate a MIPmap of the first order moment of N in real-time, as suggested in [HN18].
A MIPmap of E is pre-computed. We denote {E0, E1, E2, . . .} the MIP hierarchy, with E0 = E the finest level. A texel
at level l has a square footprint P with center Ṗ.

El(P)
def
=

1

#P
∑
u∈P

E(u) (2)

1

Now we approximate the mean of N over P by

N(P) def
=

1

#P
∑
u∈P

N(u) (3)

≈
3∑

i=1

wi(Ṗ)El,i(P)
def
= N̂l(P) (4)

where the tile El,i has the same shape as Ei but is trimmed in El. The approximation is due to wi(u) ≈ wi(Ṗ) for all
u ∈ P, which is considered constant over the footprint and evaluated at its center.

2.2 Estimation over a arbitrary footprint

At this stage, we are able to estimate the average of N over a square footprint P corresponding to a texel in the MIPmap.
We now want to estimate the value over an arbitrary footprint P represented by its compactly supported weighting
function wP . To achieve this in real-time, we leverage the previous MIPmap and a discretization wP(P) over the texels
of the MIPmaps. We assume it to be normalized, i.e.∑

P∈P

wP(P) = 1 (5)

The basic idea is to: cut the integral into pieces P ∈ P; approximate wP constant over P; use the previous MIPmap
estimation.

N(P)
def
=

∫
P
wP(u)N(u)du (6)

=
∑
P∈P

∫
P
wP(u)N(u)du (7)

≈
∑
P∈P

wP(P)
∫
P
N(u)du (8)

=
∑
P∈P

wP(P)N(P) (9)

≈
∑
P∈P

wP(P)N̂l(P)
def
= N̂l(P) (10)

2

3 Centered second order moment estimation

3.1 MIPmap estimation

We now want to approximate a MIPmap of the second order moment (variance) of N in real-time.

σ2(P) def
=

1

#P
∑
u∈P

(
N(u)−N(P)

)2
(11)

=
1

#P
∑
u∈P

(
3∑

i=1

wi(u)Ei(u)−N(P)

)2

(12)

≈ 1

#P
∑
u∈P

(
3∑

i=1

wi(u)Ei(u)− N̂l(P)

)2

(13)

=
1

#P
∑
u∈P

(
3∑

i=1

wi(u)Ei(u)− wi(Ṗ)El,i(P)

)2

(14)

≈ 1

#P
∑
u∈P

(
3∑

i=1

wi(Ṗ) (Ei(u)− El,i(P))

)2

(15)

Here we can develop the inner sum:(
3∑

i=1

wi(Ṗ) (Ei(u)− El,i(P))

)2

=

3∑
i=1

w2
i (Ṗ) (Ei(u)− El,i(P))2 (16)

+ 2
∑

1≤i<j≤

wi(Ṗ)wj(Ṗ) (Ei(u)− El,i(P)) (Ej(u)− El,j(P)) (17)

≈
3∑

i=1

w2
i (Ṗ) (Ei(u)− El,i(P))2 (18)

by neglecting the cross-products. Note that it is possible to neglect the cross-products because we compute the centered
moment (σ2); this would not be possible for the non-centered moment (N2) because the cross-products contribute a lot.
Then we plug the approximation in the formula of σ2:

σ2(P) ≈ 1

#P
∑
u∈P

3∑
i=1

w2
i (Ṗ) (Ei(u)− El,i(P))2 (19)

≈
3∑

i=1

w2
i (Ṗ)

1

#P
∑
u∈P

(Ei(u)− El,i(P))2 (20)

=

3∑
i=1

w2
i (Ṗ)Vl,i(P)

def
= σ̂2

l(P) (21)

where Vl,i is a tile trimmed in Vl. We define {V0, V1, V2, . . .} as a MIPmap of variance:

Vl(P)
def
=

1

#P
∑
u∈P

(E(u)− El(P))2 . (22)

3.2 Estimation over an arbitrary footprint

Here we estimate the variance σ2(P) over an arbitrary footprint P represented by its compactly supported weighting
function wP . To achieve this in real-time, we leverage the previous MIPmaps and a discretization wP(P) over the texels

3

of the MIPmaps. Again, we assume it to be normalized, i.e.∑
P∈P

wP(P) = 1 (23)

We can not follow exactly the same derivation as the first order, because the variance over a union P =
⋃

P is not
the average of variances. Instead, we write

σ2(P) =N2(P)−
(
N(P)

)2
(24)

We approximate N(P) ≈ N̂l(P) defined in Section 2. We are left with the problem of approximating the non-centered
second order moment

N2(P)
def
=

∫
P
wP(u)N

2(u)du (25)

which can be averaged over a union of square footprints:

N2(P) =
∑
P∈P

∫
P
wP(u)N

2(u)du (26)

≈
∑
P∈P

wP(P)
∫
P
N2(u)du (27)

=
∑
P∈P

wP(P)N2(P) (28)

=
∑
P∈P

wP(P)
(
N(P)2 + σ2(P)

)
(29)

≈
∑
P∈P

wP(P)
(
N̂l(P)2 + σ̂2

l(P)
)

def
= N̂2

l(P) (30)

4

4 Covariance estimation

For the purpose of normal map filtering, we investigate here the estimation of the covariance of two noises N and N ′,
which correspond in the paper to the slopes in x and y.

We assume the noises to be generated using the same T&B from two inputs E and E′. It is very important to note
that we use the same random numbers, so that the tiles (Ei and E′

i in the equations below) are at the same positions
in E and in E′. Otherwise the MIPmap would not be coherent.

To do so, we adapt the equations of the previous section.

4.1 MIPmap estimation

We want to approximate

cov(P) def
=

1

#P
∑
u∈P

(
N(u)−N(P)

) (
N ′(u)−N ′(P)

)
(31)

=
1

#P
∑
u∈P

(
3∑

i=1

wi(u)Ei(u)−N(P)

)(
3∑

i=1

wi(u)E
′
i(u)−N ′(P)

)
(32)

≈ 1

#P
∑
u∈P

(
3∑

i=1

wi(u)Ei(u)− N̂l(P)

)(
3∑

i=1

wi(u)E
′
i(u)− N̂ ′

l(P)

)
(33)

=
1

#P
∑
u∈P

(
3∑

i=1

wi(u)Ei(u)− wi(Ṗ)El,i(P)

)(
3∑

i=1

wi(u)E
′
i(u)− wi(Ṗ)E′

l,i(P)

)
(34)

≈ 1

#P
∑
u∈P

(
3∑

i=1

wi(Ṗ) (Ei(u)− El,i(P))

)(
3∑

i=1

wi(Ṗ)
(
E′

i(u)− E′
l,i(P)

))
(35)

Here we can develop the product of inner sums:(
...

)(
...′
)

=

3∑
i=1

w2
i (Ṗ) (Ei(u)− El,i(P))

(
E′

i(u)− E′
l,i(P)

)
(36)

+
∑
i ̸=j

wi(Ṗ)wj(Ṗ) (Ei(u)− El,i(P))
(
E′

j(u)− E′
l,j(P)

)
(37)

≈
3∑

i=1

w2
i (Ṗ) (Ei(u)− El,i(P))

(
E′

i(u)− E′
l,i(P)

)
(38)

by neglecting the cross-products. Then we plug the approximation in the formula of cov:

cov(P) ≈ 1

#P

3∑
i=1

w2
i (Ṗ) (Ei(u)− El,i(P))

(
E′

i(u)− E′
l,i(P)

)
(39)

≈
3∑

i=1

w2
i (Ṗ)

1

#P
∑
u∈P

(Ei(u)− El,i(P))
(
E′

i(u)− E′
l,i(P)

)
(40)

=

3∑
i=1

w2
i (Ṗ)Cl,i(P)

def
= ĉovl(P) (41)

where Cl,i is a tile trimmed in Cl. We define {C0, C1, C2, . . .} as a MIPmap of covariance:

Cl(P)
def
=

1

#P
∑
u∈P

(E(u)− El(P)) (E′(u)− E′
l(P)) . (42)

5

4.2 Estimation over a arbitrary footprint

Here we estimate the covariance cov(P). As for the variance, the covariance over a union P =
⋃

P is not the average of
covariances. Instead, we write

cov(P) =NN ′(P)−N(P)N ′(P) (43)

and we are left with the problem of approximating

NN ′(P)
def
=

∫
P
wP(u)N(u)N ′(u)du (44)

=
∑
P∈P

∫
P
wP(u)N(u)N ′(u)du (45)

≈
∑
P∈P

wP(P)
∫
P
N(u)N ′(u)du (46)

=
∑
P∈P

wP(P)NN ′(P) (47)

=
∑
P∈P

wP(P)
(
N(P)N ′(P) + cov(P)

)
(48)

≈
∑
P∈P

wP(P)
(
N̂l(P)N̂ ′

l(P) + ĉovl(P)
)

def
= N̂N ′

l(P) (49)

6

5 Summary

5.1 Mean estimation

The input is E0. A MIP hierarchies is precomputed. {E0, E1, E2, . . .} is the standard MIP hierarchy. At level l, we
denote a texel or its square footprint as P, with center Ṗ.

El(P)
def
=

1

#P
∑
u∈P

E0(u) (50)

The mean over a texel is estimated by

N̂l(P)
def
=

3∑
i=1

wi(Ṗ)El,i(P) ≈ N(P) (51)

P =
⋃
P is a footprint which covers several texels P at level l. The texels are weighted by wP(P) > 0 that sum up

to 1. The mean over is estimated by

N̂l(P)
def
=
∑
P∈P

wP(P)N̂l(P) ≈ N(P) (52)

5.2 Variance estimation

The input is E0. Two MIP hierarchies are precomputed. {E0, E1, E2, . . .} is the standard MIP hierarchy. We define a
MIPmap of variance {V0, V1, V2, . . .}. At level l, we denote a texel or its square footprint as P, with center Ṗ.

Vl(P)
def
=

1

#P
∑
u∈P

(E(u)− El(P))2 . (53)

The variance over a texel is estimated by

σ̂2
l(P)

def
=

3∑
i=1

w2
i (Ṗ)Vl,i(P) ≈ σ2(P) (54)

P =
⋃
P is a footprint which covers several texels P at level l. The texels are weighted by wP(P) > 0 that sum up

to 1. The variance over is estimated by

σ̂2
l(P)

def
= N̂2

l(P)−
(
N̂l(P)

)2
≈ σ2(P) (55)

with
N̂2

l(P)
def
=
∑
P∈P

wP(P)
(
N̂l(P)2 + σ̂2

l(P)
)
≈ N2(P) (56)

5.3 Covariance estimation

We define a MIPmap of covariance {C0, C1, C2, . . .} as

Cl(P)
def
=

1

#P
∑
u∈P

(E(u)− El(P)) (E′(u)− E′
l(P)) . (57)

The covariance over a texel are estimated by

ĉovl(P)
def
=

3∑
i=1

w2
i (Ṗ)Cl,i(P) ≈ cov(P) (58)

7

The covariance over P =
⋃
P is estimated by

N̂N ′
l(P)

def
=
∑
P∈P

wP(P)
(
N̂l(P)N̂ ′

l(P) + ĉovl(P)
)
≈ NN ′(P) (59)

ĉovl(P)
def
= N̂N ′

l(P)− N̂l(P)N̂ ′
l(P) ≈ cov(P) (60)

8

6 Results

In this section:

1. We present in detail the impact of the approximation of the mean and variance.

2. We examine the impact of these approximations on the filtering of the patterns.

3. We show other generated patterns, using various color-map and input noises.

4. We examine the filtering of the procedural phasor noise.

6.1 First order moment and standard deviation estimation

In this section, we measure the errors due to mean and variance estimation, compared to the reference. We also plot
the standard deviation, as it is commensurable to the mean –while the the variance is not.

(a) Reference µ

(b) Approximation µ̂

(c) Error ||µ̂− µ||

Figure 1: Approximation µ̂ of the first order moment µ. From left to right: footprint size equal to 1 (input), 2, 4, 8, 16,
32, 64, 128. Size of the input: 1024× 1024.

9

(a) Reference σ2

(b) Approximation σ̂2

(c) Error ||σ̂2 − σ2||

Figure 2: Approximation σ̂2 of the variance σ2 scaled by a factor 10 for the visibility. From left to right: footprint size
equal to 1 (input), 2, 4, 8, 16, 32, 64, 128. Size of the input: 1024× 1024.

(a) Reference σ

(b) Approximation σ̂

(c) Error ||σ̂ − σ||

Figure 3: Approximation σ̂ of the standard deviation σ. From left to right: footprint size equal to 1 (input), 2, 4, 8, 16,
32, 64, 128. Size of the input: 1024× 1024.

10

6.2 Approximation for colored noise filtering

We compare errors due to the different approximations Ŝ, µ̂ and σ̂ separately:

1. Ŝ(µ, σ), using the exact values of µ and σ (Figure 4 & 8).

2. Ŝ(µ̂, σ), using the estimated mean value µ̂ and the exact value of σ (Figure 5 & 9).

3. Ŝ(µ, σ̂), using the exact value of µ and the estimated standard deviation value σ̂ (Figure 6 & 10).

4. Ŝ(µ̂, σ̂), using both the estimated mean µ̂ and standard deviation σ̂ (Figure 7 & 11).

We present the previous approximation for two different color-map. The first one is composed of different shades
of green and the second one has saturated red, green, and blue colors. Those two color-maps bring out the impact of
the discontinuities in the color-map used. Thus, errors are located in the same area but are more accentuated if the
color-map presents strong color changes than smooth ones.

6.2.1 Green color-map with smooth color changes

(a) Reference S

(b) Approximation Ŝ(µ, σ)

(c) Error ||Ŝ − S||

Figure 4: Approximation Ŝ of the filtering S with exact computation of the mean and the standard deviation. From
left to right: footprint size equal to 1 (input), 2, 4, 8, 16, 32, 64, 128. Size of the input: 1024× 1024.

11

(a) Reference S

(b) Approximation Ŝ(µ̂, σ)

(c) Error ||Ŝ − S||

Figure 5: Approximation Ŝ of the filtering S with approximation of the mean and exact computation of the standard
deviation. From left to right: footprint size equal to 1 (input), 2, 4, 8, 16, 32, 64, 128. Size of the input: 1024× 1024.

(a) Reference S

(b) Approximation Ŝ(µ, σ̂)

(c) Error ||Ŝ − S||

Figure 6: Approximation Ŝ of the filtering S with exact computation of the mean and approximation of the standard
deviation. From left to right: footprint size equal to 1 (input), 2, 4, 8, 16, 32, 64, 128. Size of the input: 1024× 1024.

12

(a) Reference S

(b) Approximation Ŝ(µ̂, σ̂)

(c) Error ||Ŝ − S||

Figure 7: Approximation Ŝ of the filtering S with approximation of the mean and the standard deviation. From left to
right: footprint size equal to 1 (input), 2, 4, 8, 16, 32, 64, 128. Size of the input: 1024× 1024.

6.2.2 RGB color-map with strong color changes

(a) Reference S

(b) Approximation Ŝ(µ, σ)

(c) Error ||Ŝ − S||

Figure 8: Approximation Ŝ of the filtering S with exact computation of the mean and the standard deviation. From
left to right: footprint size equal to 1 (input), 2, 4, 8, 16, 32, 64, 128. Size of the input: 1024× 1024.

13

(a) Reference S

(b) Approximation Ŝ(µ̂, σ)

(c) Error ||Ŝ − S||

Figure 9: Approximation Ŝ of the filtering S with approximation of the mean and exact computation of the standard
deviation. From left to right: footprint size equal to 1 (input), 2, 4, 8, 16, 32, 64, 128. Size of the input: 1024× 1024.

(a) Reference S

(b) Approximation Ŝ(µ, σ̂)

(c) Error ||Ŝ − S||

Figure 10: Approximation Ŝ of the filtering S with exact computation of the mean and approximation of the standard
deviation. From left to right: footprint size equal to 1 (input), 2, 4, 8, 16, 32, 64, 128. Size of the input: 1024× 1024.

14

(a) Reference S

(b) Approximation Ŝ(µ̂, σ̂)

(c) Error ||Ŝ − S||

Figure 11: Approximation Ŝ of the filtering S with approximation of the mean and the standard deviation. From left
to right: footprint size equal to 1 (input), 2, 4, 8, 16, 32, 64, 128. Size of the input: 1024× 1024.

15

6.3 Several examples of generated patterns

Figure 12: Examples of generated patterns. The first and second rows are the input noises and the left column is the
color-map.

16

6.4 Filtering of the procedural phasor noise

Figure 13: Result of the filtering of the procedural phasor noise with different profile function. Top rows: profiles, and
color-maps profile ◦ atan2. Then, from top to bottom: approximation Ŝ(µ̂P , σ̂P) for footprint size equal to 1 (input),
2, 4, 8, 16, 32, 64, 128. Size of the input: 1024× 1024.

17

We compare errors due to the different approximations Ŝ, µ̂ and σ̂ separately:

1. Ŝ(µ, σ), using the exact values of µ and σ (Figure 14);

2. Ŝ(µ̂, σ), using the estimated mean value µ̂ and the exact value of σ (Figure 15);

3. Ŝ(µ, σ̂), using the exact value of µ and the estimated standard deviation value σ̂ (Figure 16);

4. Ŝ(µ̂, σ̂), using both the estimated mean µ̂ and standard deviation σ̂ (Figure 17);

(a) Reference S

(b) Approximation Ŝ(µP , σP)

(c) Error ||Ŝ − S||

Figure 14: Approximation Ŝ of the filtering S with exact computation of the mean and the standard deviation. From
left to right: footprint size equal to 1 (input), 2, 4, 8, 16, 32, 64, 128. Size of the input: 1024× 1024.

18

(a) Reference S

(b) Approximation Ŝ(µ̂P , σP)

(c) Error ||Ŝ − S||

Figure 15: Approximation Ŝ of the filtering S with approximation of the mean and exact computation of the standard
deviation. From left to right: footprint size equal to 1 (input), 2, 4, 8, 16, 32, 64, 128. Size of the input: 1024× 1024.

(a) Reference S

(b) Approximation Ŝ(µP , σ̂P)

(c) Error ||Ŝ − S||

Figure 16: Approximation Ŝ of the filtering S with exact computation of the mean and approximation of the standard
deviation. From left to right: footprint size equal to 1 (input), 2, 4, 8, 16, 32, 64, 128. Size of the input: 1024× 1024.

19

(a) Reference S

(b) Approximation Ŝ(µ̂P , σ̂P)

(c) Error ||Ŝ − S||

Figure 17: Approximation Ŝ of the filtering S with approximation of the mean and the standard deviation. From left
to right: footprint size equal to 1 (input), 2, 4, 8, 16, 32, 64, 128. Size of the input: 1024× 1024.

References

[Bur19] Brent Burley. On histogram-preserving blending for randomized texture tiling. Journal of Computer Graphics
Techniques, 8(4), 2019.

[DH19] Thomas Deliot and Eric Heitz. Procedural stochastic textures by tiling and blending. GPU Zen, 2, 2019.

[HN18] Eric Heitz and Fabrice Neyret. High-performance by-example noise using a histogram-preserving blending
operator. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 1(2):1–25, 2018.

20

	Tiling and blending background
	First order moment estimation
	MIPmap estimation
	Estimation over a arbitrary footprint

	Centered second order moment estimation
	MIPmap estimation
	Estimation over an arbitrary footprint

	Covariance estimation
	MIPmap estimation
	Estimation over a arbitrary footprint

	Summary
	Mean estimation
	Variance estimation
	Covariance estimation

	Results
	First order moment and standard deviation estimation
	Approximation for colored noise filtering
	Green color-map with smooth color changes
	RGB color-map with strong color changes

	Several examples of generated patterns
	Filtering of the procedural phasor noise

