

- Electrode inserted from a frame screwed in the skull before intervention
- Time matters !

Parkinson's disease Deep Brain Stimulation Electrode placement Path planning

Multi-criteria optimization problem

- Path planning of a safe and efficient trajectory for the electrode [1]
- Find insertion point on the skull:
 - minimizing the distance between the electrode and the vessels
 - minimizing the distance between the electrode and the ventricles
 - proximity to a standard trajectory of 30° anterior and 30° lateral

$$egin{aligned} f_{D_{\mathcal{O}}}(\mathbf{T}) &= \mathrm{Max} iggl[rac{D_{min\mathcal{O}} - D(\mathbf{T},\mathcal{O})}{D_{min\mathcal{O}}}, 0 iggr] \ f_{ST}(\mathbf{T}) &= rac{lpha(\mathbf{T},ST)}{90} \end{aligned}$$

Methods and Results

Method NSGA-II [2]

- Dominance Based Restricted selection (DBX) from 2 parents $p_{1,k}$ and $p_{2,k}$
- BLX- α crossover
 - offspring $c_k = (1 \gamma_i)p_{1,k} + \gamma_i p_{2,k}$, where $\gamma_i = (1 + 2\alpha)u_i \alpha$ with u_i random and $\alpha = 0.5$
 - probability of 0.9, crossover distribution index $eta_c=10^{\prime}$
- polynomial mutation
- probability of 0.5, mutation distribution index *eta_m=5* initial population size = 2,000 running on 10 generations

• computation time approx. 3 mn

Reference methods

Method 1: weighted sum exploration

- aggregating approach: 3 weights for 3 objectives
- exploring 20,000 combinations of 3 weights
- calculating 20,000 optimal solutions using Nelder-Mead [1]
- average computation time around **20 mn**

Illustration of solutions found by NSGA-II and not

Method 2: discretization

- discretization approach
- 20,000 points using regular distribution
- calculating a Pareto front
- average computation time around **10 mn**

Illustration of solutions found by NSGA-II and not dominated by solutions found by method 2

dominated by solutions found by method 1

Experiment on 20 retrospective datasets of preoperative images of Parkinsonian patients from 2 different hospitals
 37% of the solutions found by NSGA-II could not be found by a weighted sum method
 For a semi-exhaustive method to outperform NSGA-II: 650,000 sample points are required, with an average time of 9 hours

Conclusion

Pareto-based MOEAs is a promising approach for neurosurgery path planning
it outperforms the classical methods used in the literature
in terms of coverage of the solution space
computation time is compatible with clinical routine

References

[1] C. Essert, C. Haegelen, F. Lalys, A. Abadie, and P. Jannin. *Automatic computation of electrode trajectories for deep brain stimulation*. Int J Comput Ass Rad, 7(4):517–532, 2012.
[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. *A fast and elitist multiobjective genetic algorithm: NSGA-II*. IEEE T Evolut Comput, 6(2):182–197, 2002.

Acknowledgements

This research was supported by the French National Research Agency (ANR) through "ACouStiC" grant ANR 2010 BLAN 0209 02.